Cloud Computing: A Hands-on Approach

Arshdeep Bahga and Vijay Madisetti

ISBN: 9788173719233 | Year: 2014 | Paperback | Pages: 456 | Language : English

Book Size: 216 x 280 mm | Territorial Rights: Restricted

Price: 950.00

This book is written as a textbook on cloud computing for educational programs at colleges. It uses an immersive "hands-on approach" to transfer knowledge to the reader by providing the necessary guidance and knowledge to develop working code for real-world cloud applications.

It is organised into three main parts. Part I covers technologies that form the foundations of cloud computing. These include topics such as virtualization, load balancing, scalability and elasticity, deployment, and replication. Part II introduces the reader to the design and programming aspects of cloud computing. Case studies on design and implementation of several cloud applications in the areas such as image processing, live streaming and social networks analytics are provided. Part III introduces the reader to specialised aspects of cloud computing including cloud application benchmarking, cloud security, multimedia applications and big data analytics. Case studies in areas such as IT, healthcare, transportation, networking and education are provided.

The book contains hundreds of figures and tested code samples that serve to provide a rigorous, "no hype" guide to cloud computing. Review questions and exercises are provided at the end of each chapter. The focus of the book is on getting the reader firmly on track to developing robust cloud applications on their own. Thus, readers can use the exercises to develop their own applications on cloud platforms, such as those from Amazon Web Services, Google Cloud, and Microsoft's Windows Azure.
Additional support is available at the book's website: www.cloudcomputingbook.info

The book can also be used by cloud service providers (companies) for their customer and employee training programs.

Arshdeep Bahga is a research scientist at Georgia Institute of Technology. His research interests include cloud computing and big data analytics. Arshdeep has authored several scientific publications in peer-reviewed journals in the areas of cloud computing and big data.

Vijay Madisetti is a professor of computer engineering at Georgia Institute of Technology. He is a Fellow of IEEE and has received the 2006 Terman Medal from the American Society of Engineering Education and HP Corporation.

Part I    Introduction and Concepts

1 Introduction to Cloud Computing 
1.1 Introduction 
1.1.1 Definition of Cloud Computing 
1.2 Characteristics of Cloud Computing 
1.3 Cloud Models 
1.3.1 Service Models 
1.3.2 Deployment Models 
1.4 Cloud Services Examples 
1.4.1 IaaS: Amazon EC2, Google Compute Engine, Azure VMs 
1.4.2 PaaS: Google App Engine 
1.4.3 SaaS: Salesforce 
1.5 Cloud-based Services & Applications 
1.5.1 Cloud Computing for Healthcare 
1.5.2 Cloud Computing for Energy Systems 
1.5.3 Cloud Computing for Transportation Systems 
1.5.4 Cloud Computing for Manufacturing Industry 
1.5.5 Cloud Computing for Government 
1.5.6 Cloud Computing for Education 
1.5.7 Cloud Computing for Mobile Communication

2 Cloud Concepts & Technologies 
2.1 Virtualization 
2.2 Load Balancing 
2.3 Scalability & Elasticity 
2.4 Deployment 
2.5 Replication 
2.6 Monitoring 
2.7 Software Defined Networking 
2.8 Network Function Virtualization 
2.9 MapReduce 
2.10  Identity and Access Management 
2.11  Service Level Agreements 
2.12  Billing 

3 Cloud Services & Platforms 
3.1 Compute Services 
3.1.1 Amazon Elastic Compute Cloud 
3.1.2 Google Compute Engine 
3.1.3 Windows Azure Virtual Machines 
3.2 Storage Services 
3.2.1 Amazon Simple Storage Service 
3.2.2 Google Cloud Storage 
3.2.3 Windows Azure Storage 
3.3 Database Services 
3.3.1 Amazon Relational Data Store 
3.3.2 Amazon DynamoDB 
3.3.3 Google Cloud SQL 
3.3.4 Google Cloud Datastore 
3.3.5 Windows Azure SQL Database 
3.3.6 Windows Azure Table Service 
3.4 Application Services 
3.4.1 Application Runtimes & Frameworks 
3.4.2 Queuing Services 
3.4.3 Email Services 
3.4.4 Notification Services 
3.4.5 Media Services
3.5 Content Delivery Services 
3.5.1 Amazon CloudFront 
3.5.2 Windows Azure Content Delivery Network 
3.6 Analytics Services 
3.6.1 Amazon Elastic MapReduce 
3.6.2 Google MapReduce Service 
3.6.3 Google BigQuery 
3.6.4 Windows Azure HDInsight 
3.7 Deployment & Management Services 
3.7.1 Amazon Elastic Beanstalk 
3.7.2 Amazon CloudFormation 
3.8 Identity & Access Management Services 
3.8.1 Amazon Identity & Access Management 
3.8.2 Windows Azure Active Directory 
3.9 Open Source Private Cloud Software 
3.9.1 CloudStack 
3.9.2 Eucalyptus 
3.9.3 OpenStack 

4 Hadoop & MapReduce 
4.1 Apache Hadoop 
4.2 Hadoop MapReduce Job Execution 
4.2.1 NameNode 
4.2.2 Secondary NameNode 
4.2.3 JobTracker 
4.2.4 TaskTracker 
4.2.5 DataNode 
4.2.6 MapReduce Job Execution Workflow 
4.3 Hadoop Schedulers 
4.3.1 FIFO 
4.3.2 Fair Scheduler 
4.3.3 Capacity Scheduler 
4.4 Hadoop Cluster Setup 
4.4.1 Install Java 
4.4.2 Install Hadoop 
4.4.3 Networking 
4.4.4 Configure Hadoop 
4.4.5 Starting and Stopping Hadoop Cluster 

 Part II Developing for Cloud 

5 Cloud Application Design 
5.1 Introduction 
5.2 Design Considerations for Cloud Applications 
5.2.1 Scalability 
5.2.2 Reliability & Availability 
5.2.3 Security 
5.2.4 Maintenance & Upgradation 
5.2.5 Performance 
5.3 Reference Architectures for Cloud Applications 
5.4 Cloud Application Design Methodologies 
5.4.1 Service Oriented Architecture 
5.4.2 Cloud Component Model 
5.4.3 IaaS, PaaS and SaaS Services for Cloud Applications 
5.4.4 Model View Controller 
5.4.5 RESTful Web Services 
5.5 Data Storage Approaches 
5.5.1 Relational (SQL) Approach 
5.5.2 Non-Relational (No-SQL) Approach 

6 Python Basics 
6.1 Introduction 
6.2 Installing Python 
6.3 Python Data Types & Data Structures 
6.3.1 Numbers 
6.3.2 Strings 
6.3.3 Lists 
6.3.4 Tuples 
6.3.5 Dictionaries 
6.3.6 Type Conversions 
6.4 Control Flow 
6.4.1 if 
6.4.2 for 
6.4.3 while 
6.4.4 range 
6.4.5 break/continue 
6.4.6 pass 
6.5 Functions 
6.6 Modules 
6.7 Packages
6.8 File Handling 
6.9 Date/Time Operations 
6.10 Classes  

7 Python for Cloud 
7.1 Python for Amazon Web Services 
7.1.1 Amazon EC2 
7.1.2 Amazon AutoScaling 
7.1.3 Amazon S3 
7.1.4 Amazon RDS 
7.1.5 Amazon DynamoDB 
7.1.6 Amazon SQS 
7.1.7 Amazon EMR 
7.2 Python for Google Cloud Platform 
7.2.1 Google Compute Engine 
7.2.2 Google Cloud Storage 
7.2.3 Google Cloud SQL 
7.2.4 Google BigQuery 
7.2.5 Google Cloud Datastore 
7.2.6 Google App Engine 
7.3 Python for Windows Azure 
7.3.1 Azure Cloud Service 
7.3.2 Azure Virtual Machines 
7.3.3 Azure Storage 
7.4 Python for MapReduce 
7.5 Python Packages of Interest 
7.5.1 JSON 
7.5.2 XML 
7.5.3 HTTPLib & URLLib 
7.5.4 SMTPLib 
7.5.5 NumPy 
7.5.6 Scikit-learn 
7.6 Python Web Application Framework - Django 
7.6.1 Django Architecture 
7.6.2 Starting Development with Django 
7.6.3 Django Case Study - Blogging App 
7.7 Designing a RESTful Web API 

8 Cloud Application Development in Python 
8.1 Design Approaches 
8.1.1 Design Methodology for IaaS Service Model 
8.1.2 Design Methodology for PaaS Service Model 
8.2 Image Processing App 
8.3 Document Storage App 
8.4 MapReduce App 
8.5 Social Media Analytics App 

Part III Advanced Topics 

9 Big Data Analytics 
9.1 Introduction 
9.2 Clustering Big Data 
9.2.1 k-Means Clustering 
9.2.2 DBSCAN Clustering 
9.2.3 Parallelizing Clustering Algorithms Using MapReduce 
9.3 Classification of Big Data 
9.3.1 Naive Bayes 
9.3.2 Decision Trees 
9.3.3 Random Forest 
9.3.4 Support Vector Machine 
9.4 Recommendation Systems 

10 Multimedia Cloud 
10.1 Introduction 
10.2 Case Study: Live Video Streaming App 
10.3 Streaming Protocols 
10.3.1 RTMP Streaming 
10.3.2 HTTP Live Streaming 
10.3.3 HTTP Dynamic Streaming 
10.4 Case Study: Video Transcoding App 

11 Cloud Application Benchmarking & Tuning 
11.1 Introduction 
11.1.1 Trace Collection/Generation 
11.1.2 Workload Modeling 
11.1.3 Workload Specification 
11.1.4 Synthetic Workload Generation 
11.1.5 User Emulation vs. Aggregate Workloads 
11.2 Workload Characteristics 
11.3 Application Performance Metrics 
11.4 Design Considerations for a Benchmarking Methodology 
11.5 Benchmarking Tools 
11.5.1 Types of Tests 
11.6 Deployment Prototyping 
11.7 Load Testing & Bottleneck Detection Case Study 
11.8 Hadoop Benchmarking Case Study 

12 Cloud Security 
12.1 Introduction 
12.2 CSA Cloud Security Architecture 
12.3 Authentication 
12.3.1 Single Sign-on (SSO) 
12.4 Authorization 
12.5 Identity & Access Management 
12.6 Data Security 
12.6.1 Securing Data at Rest 
12.6.2 Securing Data in Motion 
12.7 Key Management 
12.8 Auditing 

13 Cloud for Industry, Healthcare & Education 
13.1 Cloud Computing for Healthcare 
13.2 Cloud Computing for Energy Systems 
13.3 Cloud Computing for Transportation Systems 
13.4 Cloud Computing for Manufacturing Industry 
13.5 Cloud Computing for Education 

Appendix-A: Setting up Ubuntu VM  
Appendix-B: Setting up Django  

Bibliography  
Index  

read website online
read unfaithful wives unfaithful husband
how to cheat on wife women that cheat

`